AES(Rijndael)算法的 JavaScript 源代码
下面的内容来自 Rijndael in JavaScript。 下面的代码是 Rijndael 算法的 JavaScript 实现。它可以在 IE4+、NS4+ 以及任何兼容 ECMAScript 第一版的浏览器中运行。这个实现没有进行优化,也就是说它不适合处理大量的数据(比如多于几 KB)和需要高速运行的应用程序中。
下载: rijndael.js
- /* rijndael.js Rijndael Reference Implementation
- Copyright (c) 2001 Fritz Schneider
- This software is provided as-is, without express or implied warranty.
- Permission to use, copy, modify, distribute or sell this software, with or
- without fee, for any purpose and by any individual or organization, is hereby
- granted, provided that the above copyright notice and this paragraph appear
- in all copies. Distribution as a part of an application or binary must
- include the above copyright notice in the documentation and/or other materials
- provided with the application or distribution.
- As the above disclaimer notes, you are free to use this code however you
- want. However, I would request that you send me an email
- (fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful
- or instructional. Seeing that people are using the code acts as
- encouragement for me to continue development. If you *really* want to thank
- me you can buy the book I wrote with Thomas Powell, _JavaScript:
- _The_Complete_Reference_ :)
- This code is an UNOPTIMIZED REFERENCE implementation of Rijndael.
- If there is sufficient interest I can write an optimized (word-based,
- table-driven) version, although you might want to consider using a
- compiled language if speed is critical to your application. As it stands,
- one run of the monte carlo test (10,000 encryptions) can take up to
- several minutes, depending upon your processor. You shouldn’t expect more
- than a few kilobytes per second in throughput.
- Also note that there is very little error checking in these functions.
- Doing proper error checking is always a good idea, but the ideal
- implementation (using the instanceof operator and exceptions) requires
- IE5+/NS6+, and I’ve chosen to implement this code so that it is compatible
- with IE4/NS4.
- And finally, because JavaScript doesn’t have an explicit byte/char data
- type (although JavaScript 2.0 most likely will), when I refer to "byte"
- in this code I generally mean "32 bit integer with value in the interval
- [0,255]" which I treat as a byte.
- See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation
- of the (very simple) API provided by this code.
- Fritz Schneider
- fritz at cs.ucsd.edu
- */
- // Rijndael parameters — Valid values are 128, 192, or 256
- var keySizeInBits = 128;
- var blockSizeInBits = 128;
- /////// You shouldn’t have to modify anything below this line except for
- /////// the function getRandomBytes().
- //
- // Note: in the following code the two dimensional arrays are indexed as
- // you would probably expect, as array[row][column]. The state arrays
- // are 2d arrays of the form state[4][Nb].
- // The number of rounds for the cipher, indexed by [Nk][Nb]
- var roundsArray = [ ,,,,[,,,,10,, 12,, 14],,
- [,,,,12,, 12,, 14],,
- [,,,,14,, 14,, 14] ];
- // The number of bytes to shift by in shiftRow, indexed by [Nb][row]
- var shiftOffsets = [ ,,,,[,1, 2, 3],,[,1, 2, 3],,[,1, 3, 4] ];
- // The round constants used in subkey expansion
- var Rcon = [
- 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
- 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
- 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
- 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4,
- 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ];
- // Precomputed lookup table for the SBox
- var SBox = [
- 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171,
- 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164,
- 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113,
- 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226,
- 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214,
- 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203,
- 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69,
- 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245,
- 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68,
- 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42,
- 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73,
- 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109,
- 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37,
- 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62,
- 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225,
- 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
- 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187,
- 22 ];
- // Precomputed lookup table for the inverse SBox
- var SBoxInverse = [
- 82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215,
- 251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222,
- 233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66,
- 250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73,
- 109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92,
- 204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21,
- 70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247,
- 228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2,
- 193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220,
- 234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173,
- 53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29,
- 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75,
- 198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168,
- 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81,
- 127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160,
- 224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97,
- 23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12,
- 125 ];
- // This method circularly shifts the array left by the number of elements
- // given in its parameter. It returns the resulting array and is used for
- // the ShiftRow step. Note that shift() and push() could be used for a more
- // elegant solution, but they require IE5.5+, so I chose to do it manually.
- function cyclicShiftLeft(theArray, positions) {
- var temp = theArray.slice(0, positions);
- theArray = theArray.slice(positions).concat(temp);
- return theArray;
- }
- // Cipher parameters … do not change these
- var Nk = keySizeInBits / 32;
- var Nb = blockSizeInBits / 32;
- var Nr = roundsArray[Nk][Nb];
- // Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec.
- function xtime(poly) {
- poly <<= 1;
- return ((poly & 0x100) ? (poly ^ 0x11B) : (poly));
- }
- // Multiplies the two elements of GF(2^8) together and returns the result.
- // See the Rijndael spec, but should be straightforward: for each power of
- // the indeterminant that has a 1 coefficient in x, add y times that power
- // to the result. x and y should be bytes representing elements of GF(2^8)
- function mult_GF256(x, y) {
- var bit, result = 0;
- for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) {
- if (x & bit)
- result ^= y;
- }
- return result;
- }
- // Performs the substitution step of the cipher. State is the 2d array of
- // state information (see spec) and direction is string indicating whether
- // we are performing the forward substitution ("encrypt") or inverse
- // substitution (anything else)
- function byteSub(state, direction) {
- var S;
- if (direction == "encrypt") // Point S to the SBox we’re using
- S = SBox;
- else
- S = SBoxInverse;
- for (var i = 0; i < 4; i++) // Substitute for every byte in state
- for (var j = 0; j < Nb; j++)
- state[i][j] = S[state[i][j]];
- }
- // Performs the row shifting step of the cipher.
- function shiftRow(state, direction) {
- for (var i=1; i<4; i++) // Row 0 never shifts
- if (direction == "encrypt")
- state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]);
- else
- state[i] = cyclicShiftLeft(state[i], Nb – shiftOffsets[Nb][i]);
- }
- // Performs the column mixing step of the cipher. Most of these steps can
- // be combined into table lookups on 32bit values (at least for encryption)
- // to greatly increase the speed.
- function mixColumn(state, direction) {
- var b = []; // Result of matrix multiplications
- for (var j = 0; j < Nb; j++) { // Go through each column…
- for (var i = 0; i < 4; i++) { // and for each row in the column…
- if (direction == "encrypt")
- b[i] = mult_GF256(state[i][j], 2) ^ // perform mixing
- mult_GF256(state[(i+1)%4][j], 3) ^
- state[(i+2)%4][j] ^
- state[(i+3)%4][j];
- else
- b[i] = mult_GF256(state[i][j], 0xE) ^
- mult_GF256(state[(i+1)%4][j], 0xB) ^
- mult_GF256(state[(i+2)%4][j], 0xD) ^
- mult_GF256(state[(i+3)%4][j], 9);
- }
- for (var i = 0; i < 4; i++) // Place result back into column
- state[i][j] = b[i];
- }
- }
- // Adds the current round key to the state information. Straightforward.
- function addRoundKey(state, roundKey) {
- for (var j = 0; j < Nb; j++) { // Step through columns…
- state[0][j] ^= (roundKey[j] & 0xFF); // and XOR
- state[1][j] ^= ((roundKey[j]>>8) & 0xFF);
- state[2][j] ^= ((roundKey[j]>>16) & 0xFF);
- state[3][j] ^= ((roundKey[j]>>24) & 0xFF);
- }
- }
- // This function creates the expanded key from the input (128/192/256-bit)
- // key. The parameter key is an array of bytes holding the value of the key.
- // The returned value is an array whose elements are the 32-bit words that
- // make up the expanded key.
- function keyExpansion(key) {
- var expandedKey = new Array();
- var temp;
- // in case the key size or parameters were changed…
- Nk = keySizeInBits / 32;
- Nb = blockSizeInBits / 32;
- Nr = roundsArray[Nk][Nb];
- for (var j=0; j < Nk; j++) // Fill in input key first
- expandedKey[j] =
- (key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24);
- // Now walk down the rest of the array filling in expanded key bytes as
- // per Rijndael’s spec
- for (j = Nk; j < Nb * (Nr + 1); j++) { // For each word of expanded key
- temp = expandedKey[j – 1];
- if (j % Nk == 0)
- temp = ( (SBox[(temp>>8) & 0xFF]) |
- (SBox[(temp>>16) & 0xFF]<<8) |
- (SBox[(temp>>24) & 0xFF]<<16) |
- (SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) – 1];
- else if (Nk > 6 && j % Nk == 4)
- temp = (SBox[(temp>>24) & 0xFF]<<24) |
- (SBox[(temp>>16) & 0xFF]<<16) |
- (SBox[(temp>>8) & 0xFF]<<8) |
- (SBox[temp & 0xFF]);
- expandedKey[j] = expandedKey[j-Nk] ^ temp;
- }
- return expandedKey;
- }
- // Rijndael’s round functions…
- function Round(state, roundKey) {
- byteSub(state, "encrypt");
- shiftRow(state, "encrypt");
- mixColumn(state, "encrypt");
- addRoundKey(state, roundKey);
- }
- function InverseRound(state, roundKey) {
- addRoundKey(state, roundKey);
- mixColumn(state, "decrypt");
- shiftRow(state, "decrypt");
- byteSub(state, "decrypt");
- }
- function FinalRound(state, roundKey) {
- byteSub(state, "encrypt");
- shiftRow(state, "encrypt");
- addRoundKey(state, roundKey);
- }
- function InverseFinalRound(state, roundKey){
- addRoundKey(state, roundKey);
- shiftRow(state, "decrypt");
- byteSub(state, "decrypt");
- }
- // encrypt is the basic encryption function. It takes parameters
- // block, an array of bytes representing a plaintext block, and expandedKey,
- // an array of words representing the expanded key previously returned by
- // keyExpansion(). The ciphertext block is returned as an array of bytes.
- function encrypt(block, expandedKey) {
- var i;
- if (!block || block.length*8 != blockSizeInBits)
- return;
- if (!expandedKey)
- return;
- block = packBytes(block);
- addRoundKey(block, expandedKey);
- for (i=1; i<Nr; i++)
- Round(block, expandedKey.slice(Nb*i, Nb*(i+1)));
- FinalRound(block, expandedKey.slice(Nb*Nr));
- return unpackBytes(block);
- }
- // decrypt is the basic decryption function. It takes parameters
- // block, an array of bytes representing a ciphertext block, and expandedKey,
- // an array of words representing the expanded key previously returned by
- // keyExpansion(). The decrypted block is returned as an array of bytes.
- function decrypt(block, expandedKey) {
- var i;
- if (!block || block.length*8 != blockSizeInBits)
- return;
- if (!expandedKey)
- return;
- block = packBytes(block);
- InverseFinalRound(block, expandedKey.slice(Nb*Nr));
- for (i = Nr – 1; i>0; i--)
- InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1)));
- addRoundKey(block, expandedKey);
- return unpackBytes(block);
- }
- // This method takes a byte array (byteArray) and converts it to a string by
- // applying String.fromCharCode() to each value and concatenating the result.
- // The resulting string is returned. Note that this function SKIPS zero bytes
- // under the assumption that they are padding added in formatPlaintext().
- // Obviously, do not invoke this method on raw data that can contain zero
- // bytes. It is really only appropriate for printable ASCII/Latin-1
- // values. Roll your own function for more robust functionality :)
- function byteArrayToString(byteArray) {
- var result = "";
- for(var i=0; i<byteArray.length; i++)
- if (byteArray[i] != 0)
- result += String.fromCharCode(byteArray[i]);
- return result;
- }
- // This function takes an array of bytes (byteArray) and converts them
- // to a hexadecimal string. Array element 0 is found at the beginning of
- // the resulting string, high nibble first. Consecutive elements follow
- // similarly, for example [16, 255] --> "10ff". The function returns a
- // string.
- function byteArrayToHex(byteArray) {
- var result = "";
- if (!byteArray)
- return;
- for (var i=0; i<byteArray.length; i++)
- result += ((byteArray[i]<16) ? "0" : "") + byteArray[i].toString(16);
- return result;
- }
- // This function converts a string containing hexadecimal digits to an
- // array of bytes. The resulting byte array is filled in the order the
- // values occur in the string, for example "10FF" --> [16, 255]. This
- // function returns an array.
- function hexToByteArray(hexString) {
- var byteArray = [];
- if (hexString.length % 2) // must have even length
- return;
- if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0)
- hexString = hexString.substring(2);
- for (var i = 0; i<hexString.length; i += 2)
- byteArray[Math.floor(i/2)] = parseInt(hexString.slice(i, i+2), 16);
- return byteArray;
- }
- // This function packs an array of bytes into the four row form defined by
- // Rijndael. It assumes the length of the array of bytes is divisible by
- // four. Bytes are filled in according to the Rijndael spec (starting with
- // column 0, row 0 to 3). This function returns a 2d array.
- function packBytes(octets) {
- var state = new Array();
- if (!octets || octets.length % 4)
- return;
- state[0] = new Array(); state[1] = new Array();
- state[2] = new Array(); state[3] = new Array();
- for (var j=0; j<octets.length; j+= 4) {
- state[0][j/4] = octets[j];
- state[1][j/4] = octets[j+1];
- state[2][j/4] = octets[j+2];
- state[3][j/4] = octets[j+3];
- }
- return state;
- }
- // This function unpacks an array of bytes from the four row format preferred
- // by Rijndael into a single 1d array of bytes. It assumes the input "packed"
- // is a packed array. Bytes are filled in according to the Rijndael spec.
- // This function returns a 1d array of bytes.
- function unpackBytes(packed) {
- var result = new Array();
- for (var j=0; j<packed[0].length; j++) {
- result[result.length] = packed[0][j];
- result[result.length] = packed[1][j];
- result[result.length] = packed[2][j];
- result[result.length] = packed[3][j];
- }
- return result;
- }
- // This function takes a prospective plaintext (string or array of bytes)
- // and pads it with zero bytes if its length is not a multiple of the block
- // size. If plaintext is a string, it is converted to an array of bytes
- // in the process. The type checking can be made much nicer using the
- // instanceof operator, but this operator is not available until IE5.0 so I
- // chose to use the heuristic below.
- function formatPlaintext(plaintext) {
- var bpb = blockSizeInBits / 8; // bytes per block
- var i;
- // if primitive string or String instance
- if (typeof plaintext == "string" || plaintext.indexOf) {
- plaintext = plaintext.split("");
- // Unicode issues here (ignoring high byte)
- for (i=0; i<plaintext.length; i++)
- plaintext[i] = plaintext[i].charCodeAt(0) & 0xFF;
- }
- for (i = bpb – (plaintext.length % bpb); i > 0 && i < bpb; i--)
- plaintext[plaintext.length] = 0;
- return plaintext;
- }
- // Returns an array containing "howMany" random bytes. YOU SHOULD CHANGE THIS
- // TO RETURN HIGHER QUALITY RANDOM BYTES IF YOU ARE USING THIS FOR A "REAL"
- // APPLICATION.
- function getRandomBytes(howMany) {
- var i;
- var bytes = new Array();
- for (i=0; i<howMany; i++)
- bytes[i] = Math.round(Math.random()*255);
- return bytes;
- }
- // rijndaelEncrypt(plaintext, key, mode)
- // Encrypts the plaintext using the given key and in the given mode.
- // The parameter "plaintext" can either be a string or an array of bytes.
- // The parameter "key" must be an array of key bytes. If you have a hex
- // string representing the key, invoke hexToByteArray() on it to convert it
- // to an array of bytes. The third parameter "mode" is a string indicating
- // the encryption mode to use, either "ECB" or "CBC". If the parameter is
- // omitted, ECB is assumed.
- //
- // An array of bytes representing the cihpertext is returned. To convert
- // this array to hex, invoke byteArrayToHex() on it. If you are using this
- // "for real" it is a good idea to change the function getRandomBytes() to
- // something that returns truly random bits.
- function rijndaelEncrypt(plaintext, key, mode) {
- var expandedKey, i, aBlock;
- var bpb = blockSizeInBits / 8; // bytes per block
- var ct; // ciphertext
- if (!plaintext || !key)
- return;
- if (key.length*8 != keySizeInBits)
- return;
- if (mode == "CBC")
- ct = getRandomBytes(bpb); // get IV
- else {
- mode = "ECB";
- ct = new Array();
- }
- // convert plaintext to byte array and pad with zeros if necessary.
- plaintext = formatPlaintext(plaintext);
- expandedKey = keyExpansion(key);
- for (var block=0; block<plaintext.length / bpb; block++) {
- aBlock = plaintext.slice(block*bpb, (block+1)*bpb);
- if (mode == "CBC")
- for (var i=0; i<bpb; i++)
- aBlock[i] ^= ct[block*bpb + i];
- ct = ct.concat(encrypt(aBlock, expandedKey));
- }
- return ct;
- }
- // rijndaelDecrypt(ciphertext, key, mode)
- // Decrypts the using the given key and mode. The parameter "ciphertext"
- // must be an array of bytes. The parameter "key" must be an array of key
- // bytes. If you have a hex string representing the ciphertext or key,
- // invoke hexToByteArray() on it to convert it to an array of bytes. The
- // parameter "mode" is a string, either "CBC" or "ECB".
- //
- // An array of bytes representing the plaintext is returned. To convert
- // this array to a hex string, invoke byteArrayToHex() on it. To convert it
- // to a string of characters, you can use byteArrayToString().
- function rijndaelDecrypt(ciphertext, key, mode) {
- var expandedKey;
- var bpb = blockSizeInBits / 8; // bytes per block
- var pt = new Array(); // plaintext array
- var aBlock; // a decrypted block
- var block; // current block number
- if (!ciphertext || !key || typeof ciphertext == "string")
- return;
- if (key.length*8 != keySizeInBits)
- return;
- if (!mode)
- mode = "ECB"; // assume ECB if mode omitted
- expandedKey = keyExpansion(key);
- // work backwards to accomodate CBC mode
- for (block=(ciphertext.length / bpb)-1; block>0; block--) {
- aBlock =
- decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey);
- if (mode == "CBC")
- for (var i=0; i<bpb; i++)
- pt[(block-1)*bpb + i] = aBlock[i] ^ ciphertext[(block-1)*bpb + i];
- else
- pt = aBlock.concat(pt);
- }
- // do last block if ECB (skips the IV in CBC)
- if (mode == "ECB")
- pt = decrypt(ciphertext.slice(0, bpb), expandedKey).concat(pt);
- return pt;
- }
from:http://www.coolcode.org/?action=show&id=94