AES(Rijndael)算法的 JavaScript 源代码
		
		下面的内容来自 Rijndael in JavaScript。 下面的代码是 Rijndael 算法的 JavaScript 实现。它可以在 IE4+、NS4+ 以及任何兼容 ECMAScript 第一版的浏览器中运行。这个实现没有进行优化,也就是说它不适合处理大量的数据(比如多于几 KB)和需要高速运行的应用程序中。
下载: rijndael.js
- /* rijndael.js      Rijndael Reference Implementation
 
-    Copyright (c) 2001 Fritz Schneider
 
- This software is provided as-is, without express or implied warranty.
 
- Permission to use, copy, modify, distribute or sell this software, with or
 
- without fee, for any purpose and by any individual or organization, is hereby
 
- granted, provided that the above copyright notice and this paragraph appear
 
- in all copies. Distribution as a part of an application or binary must
 
- include the above copyright notice in the documentation and/or other materials
 
- provided with the application or distribution.
 
-    As the above disclaimer notes, you are free to use this code however you
 
-    want. However, I would request that you send me an email
 
-    (fritz /at/ cs /dot/ ucsd /dot/ edu) to say hi if you find this code useful
 
-    or instructional. Seeing that people are using the code acts as
 
-    encouragement for me to continue development. If you *really* want to thank
 
-    me you can buy the book I wrote with Thomas Powell, _JavaScript:
 
-    _The_Complete_Reference_ :)
 
-    This code is an UNOPTIMIZED REFERENCE implementation of Rijndael.
 
-    If there is sufficient interest I can write an optimized (word-based,
 
-    table-driven) version, although you might want to consider using a
 
-    compiled language if speed is critical to your application. As it stands,
 
-    one run of the monte carlo test (10,000 encryptions) can take up to
 
-    several minutes, depending upon your processor. You shouldn’t expect more
 
-    than a few kilobytes per second in throughput.
 
-    Also note that there is very little error checking in these functions.
 
-    Doing proper error checking is always a good idea, but the ideal
 
-    implementation (using the instanceof operator and exceptions) requires
 
-    IE5+/NS6+, and I’ve chosen to implement this code so that it is compatible
 
-    with IE4/NS4.
 
-    And finally, because JavaScript doesn’t have an explicit byte/char data
 
-    type (although JavaScript 2.0 most likely will), when I refer to "byte"
 
-    in this code I generally mean "32 bit integer with value in the interval
 
-    [0,255]" which I treat as a byte.
 
-    See http://www-cse.ucsd.edu/~fritz/rijndael.html for more documentation
 
-    of the (very simple) API provided by this code.
 
-                                                Fritz Schneider
 
-                                                fritz at cs.ucsd.edu
 
- */
 
- // Rijndael parameters —  Valid values are 128, 192, or 256
 
- var keySizeInBits = 128;
 
- var blockSizeInBits = 128;
 
- ///////  You shouldn’t have to modify anything below this line except for
 
- ///////  the function getRandomBytes().
 
- //
 
- // Note: in the following code the two dimensional arrays are indexed as
 
- //       you would probably expect, as array[row][column]. The state arrays
 
- //       are 2d arrays of the form state[4][Nb].
 
- // The number of rounds for the cipher, indexed by [Nk][Nb]
 
- var roundsArray = [ ,,,,[,,,,10,, 12,, 14],,
 
-                         [,,,,12,, 12,, 14],,
 
-                         [,,,,14,, 14,, 14] ];
 
- // The number of bytes to shift by in shiftRow, indexed by [Nb][row]
 
- var shiftOffsets = [ ,,,,[,1, 2, 3],,[,1, 2, 3],,[,1, 3, 4] ];
 
- // The round constants used in subkey expansion
 
- var Rcon = [
 
- 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
 
- 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
 
- 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
 
- 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4,
 
- 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 ];
 
- // Precomputed lookup table for the SBox
 
- var SBox = [
 
-  99, 124, 119, 123, 242, 107, 111, 197,  48,   1, 103,  43, 254, 215, 171,
 
- 118, 202, 130, 201, 125, 250,  89,  71, 240, 173, 212, 162, 175, 156, 164,
 
- 114, 192, 183, 253, 147,  38,  54,  63, 247, 204,  52, 165, 229, 241, 113,
 
- 216,  49,  21,   4, 199,  35, 195,  24, 150,   5, 154,   7,  18, 128, 226,
 
- 235,  39, 178, 117,   9, 131,  44,  26,  27, 110,  90, 160,  82,  59, 214,
 
- 179,  41, 227,  47, 132,  83, 209,   0, 237,  32, 252, 177,  91, 106, 203,
 
- 190,  57,  74,  76,  88, 207, 208, 239, 170, 251,  67,  77,  51, 133,  69,
 
- 249,   2, 127,  80,  60, 159, 168,  81, 163,  64, 143, 146, 157,  56, 245,
 
- 188, 182, 218,  33,  16, 255, 243, 210, 205,  12,  19, 236,  95, 151,  68,
 
- 23,  196, 167, 126,  61, 100,  93,  25, 115,  96, 129,  79, 220,  34,  42,
 
- 144, 136,  70, 238, 184,  20, 222,  94,  11, 219, 224,  50,  58,  10,  73,
 
-   6,  36,  92, 194, 211, 172,  98, 145, 149, 228, 121, 231, 200,  55, 109,
 
- 141, 213,  78, 169, 108,  86, 244, 234, 101, 122, 174,   8, 186, 120,  37,
 
-  46,  28, 166, 180, 198, 232, 221, 116,  31,  75, 189, 139, 138, 112,  62,
 
- 181, 102,  72,   3, 246,  14,  97,  53,  87, 185, 134, 193,  29, 158, 225,
 
- 248, 152,  17, 105, 217, 142, 148, 155,  30, 135, 233, 206,  85,  40, 223,
 
- 140, 161, 137,  13, 191, 230,  66, 104,  65, 153,  45,  15, 176,  84, 187,
 
-  22 ];
 
- // Precomputed lookup table for the inverse SBox
 
- var SBoxInverse = [
 
-  82,   9, 106, 213,  48,  54, 165,  56, 191,  64, 163, 158, 129, 243, 215,
 
- 251, 124, 227,  57, 130, 155,  47, 255, 135,  52, 142,  67,  68, 196, 222,
 
- 233, 203,  84, 123, 148,  50, 166, 194,  35,  61, 238,  76, 149,  11,  66,
 
- 250, 195,  78,   8,  46, 161, 102,  40, 217,  36, 178, 118,  91, 162,  73,
 
- 109, 139, 209,  37, 114, 248, 246, 100, 134, 104, 152,  22, 212, 164,  92,
 
- 204,  93, 101, 182, 146, 108, 112,  72,  80, 253, 237, 185, 218,  94,  21,
 
-  70,  87, 167, 141, 157, 132, 144, 216, 171,   0, 140, 188, 211,  10, 247,
 
- 228,  88,   5, 184, 179,  69,   6, 208,  44,  30, 143, 202,  63,  15,   2,
 
- 193, 175, 189,   3,   1,  19, 138, 107,  58, 145,  17,  65,  79, 103, 220,
 
- 234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116,  34, 231, 173,
 
-  53, 133, 226, 249,  55, 232,  28, 117, 223, 110,  71, 241,  26, 113,  29,
 
-  41, 197, 137, 111, 183,  98,  14, 170,  24, 190,  27, 252,  86,  62,  75,
 
- 198, 210, 121,  32, 154, 219, 192, 254, 120, 205,  90, 244,  31, 221, 168,
 
-  51, 136,   7, 199,  49, 177,  18,  16,  89,  39, 128, 236,  95,  96,  81,
 
- 127, 169,  25, 181,  74,  13,  45, 229, 122, 159, 147, 201, 156, 239, 160,
 
- 224,  59,  77, 174,  42, 245, 176, 200, 235, 187,  60, 131,  83, 153,  97,
 
-  23,  43,   4, 126, 186, 119, 214,  38, 225, 105,  20,  99,  85,  33,  12,
 
- 125 ];
 
- // This method circularly shifts the array left by the number of elements
 
- // given in its parameter. It returns the resulting array and is used for
 
- // the ShiftRow step. Note that shift() and push() could be used for a more
 
- // elegant solution, but they require IE5.5+, so I chose to do it manually.
 
- function cyclicShiftLeft(theArray, positions) {
 
-   var temp = theArray.slice(0, positions);
 
-   theArray = theArray.slice(positions).concat(temp);
 
-   return theArray;
 
- }
 
- // Cipher parameters … do not change these
 
- var Nk = keySizeInBits / 32;
 
- var Nb = blockSizeInBits / 32;
 
- var Nr = roundsArray[Nk][Nb];
 
- // Multiplies the element "poly" of GF(2^8) by x. See the Rijndael spec.
 
- function xtime(poly) {
 
-   poly <<= 1;
 
-   return ((poly & 0x100) ? (poly ^ 0x11B) : (poly));
 
- }
 
- // Multiplies the two elements of GF(2^8) together and returns the result.
 
- // See the Rijndael spec, but should be straightforward: for each power of
 
- // the indeterminant that has a 1 coefficient in x, add y times that power
 
- // to the result. x and y should be bytes representing elements of GF(2^8)
 
- function mult_GF256(x, y) {
 
-   var bit, result = 0;
 
-   for (bit = 1; bit < 256; bit *= 2, y = xtime(y)) {
 
-     if (x & bit)
 
-       result ^= y;
 
-   }
 
-   return result;
 
- }
 
- // Performs the substitution step of the cipher. State is the 2d array of
 
- // state information (see spec) and direction is string indicating whether
 
- // we are performing the forward substitution ("encrypt") or inverse
 
- // substitution (anything else)
 
- function byteSub(state, direction) {
 
-   var S;
 
-   if (direction == "encrypt")           // Point S to the SBox we’re using
 
-     S = SBox;
 
-   else
 
-     S = SBoxInverse;
 
-   for (var i = 0; i < 4; i++)           // Substitute for every byte in state
 
-     for (var j = 0; j < Nb; j++)
 
-        state[i][j] = S[state[i][j]];
 
- }
 
- // Performs the row shifting step of the cipher.
 
- function shiftRow(state, direction) {
 
-   for (var i=1; i<4; i++)               // Row 0 never shifts
 
-     if (direction == "encrypt")
 
-        state[i] = cyclicShiftLeft(state[i], shiftOffsets[Nb][i]);
 
-     else
 
-        state[i] = cyclicShiftLeft(state[i], Nb – shiftOffsets[Nb][i]);
 
- }
 
- // Performs the column mixing step of the cipher. Most of these steps can
 
- // be combined into table lookups on 32bit values (at least for encryption)
 
- // to greatly increase the speed.
 
- function mixColumn(state, direction) {
 
-   var b = [];                            // Result of matrix multiplications
 
-   for (var j = 0; j < Nb; j++) {         // Go through each column…
 
-     for (var i = 0; i < 4; i++) {        // and for each row in the column…
 
-       if (direction == "encrypt")
 
-         b[i] = mult_GF256(state[i][j], 2) ^          // perform mixing
 
-                mult_GF256(state[(i+1)%4][j], 3) ^
 
-                state[(i+2)%4][j] ^
 
-                state[(i+3)%4][j];
 
-       else
 
-         b[i] = mult_GF256(state[i][j], 0xE) ^
 
-                mult_GF256(state[(i+1)%4][j], 0xB) ^
 
-                mult_GF256(state[(i+2)%4][j], 0xD) ^
 
-                mult_GF256(state[(i+3)%4][j], 9);
 
-     }
 
-     for (var i = 0; i < 4; i++)          // Place result back into column
 
-       state[i][j] = b[i];
 
-   }
 
- }
 
- // Adds the current round key to the state information. Straightforward.
 
- function addRoundKey(state, roundKey) {
 
-   for (var j = 0; j < Nb; j++) {                 // Step through columns…
 
-     state[0][j] ^= (roundKey[j] & 0xFF);         // and XOR
 
-     state[1][j] ^= ((roundKey[j]>>8) & 0xFF);
 
-     state[2][j] ^= ((roundKey[j]>>16) & 0xFF);
 
-     state[3][j] ^= ((roundKey[j]>>24) & 0xFF);
 
-   }
 
- }
 
- // This function creates the expanded key from the input (128/192/256-bit)
 
- // key. The parameter key is an array of bytes holding the value of the key.
 
- // The returned value is an array whose elements are the 32-bit words that
 
- // make up the expanded key.
 
- function keyExpansion(key) {
 
-   var expandedKey = new Array();
 
-   var temp;
 
-   // in case the key size or parameters were changed…
 
-   Nk = keySizeInBits / 32;
 
-   Nb = blockSizeInBits / 32;
 
-   Nr = roundsArray[Nk][Nb];
 
-   for (var j=0; j < Nk; j++)     // Fill in input key first
 
-     expandedKey[j] =
 
-       (key[4*j]) | (key[4*j+1]<<8) | (key[4*j+2]<<16) | (key[4*j+3]<<24);
 
-   // Now walk down the rest of the array filling in expanded key bytes as
 
-   // per Rijndael’s spec
 
-   for (j = Nk; j < Nb * (Nr + 1); j++) {    // For each word of expanded key
 
-     temp = expandedKey[j – 1];
 
-     if (j % Nk == 0)
 
-       temp = ( (SBox[(temp>>8) & 0xFF]) |
 
-                (SBox[(temp>>16) & 0xFF]<<8) |
 
-                (SBox[(temp>>24) & 0xFF]<<16) |
 
-                (SBox[temp & 0xFF]<<24) ) ^ Rcon[Math.floor(j / Nk) – 1];
 
-     else if (Nk > 6 && j % Nk == 4)
 
-       temp = (SBox[(temp>>24) & 0xFF]<<24) |
 
-              (SBox[(temp>>16) & 0xFF]<<16) |
 
-              (SBox[(temp>>8) & 0xFF]<<8) |
 
-              (SBox[temp & 0xFF]);
 
-     expandedKey[j] = expandedKey[j-Nk] ^ temp;
 
-   }
 
-   return expandedKey;
 
- }
 
- // Rijndael’s round functions…
 
- function Round(state, roundKey) {
 
-   byteSub(state, "encrypt");
 
-   shiftRow(state, "encrypt");
 
-   mixColumn(state, "encrypt");
 
-   addRoundKey(state, roundKey);
 
- }
 
- function InverseRound(state, roundKey) {
 
-   addRoundKey(state, roundKey);
 
-   mixColumn(state, "decrypt");
 
-   shiftRow(state, "decrypt");
 
-   byteSub(state, "decrypt");
 
- }
 
- function FinalRound(state, roundKey) {
 
-   byteSub(state, "encrypt");
 
-   shiftRow(state, "encrypt");
 
-   addRoundKey(state, roundKey);
 
- }
 
- function InverseFinalRound(state, roundKey){
 
-   addRoundKey(state, roundKey);
 
-   shiftRow(state, "decrypt");
 
-   byteSub(state, "decrypt");
 
- }
 
- // encrypt is the basic encryption function. It takes parameters
 
- // block, an array of bytes representing a plaintext block, and expandedKey,
 
- // an array of words representing the expanded key previously returned by
 
- // keyExpansion(). The ciphertext block is returned as an array of bytes.
 
- function encrypt(block, expandedKey) {
 
-   var i;
 
-   if (!block || block.length*8 != blockSizeInBits)
 
-      return;
 
-   if (!expandedKey)
 
-      return;
 
-   block = packBytes(block);
 
-   addRoundKey(block, expandedKey);
 
-   for (i=1; i<Nr; i++)
 
-     Round(block, expandedKey.slice(Nb*i, Nb*(i+1)));
 
-   FinalRound(block, expandedKey.slice(Nb*Nr));
 
-   return unpackBytes(block);
 
- }
 
- // decrypt is the basic decryption function. It takes parameters
 
- // block, an array of bytes representing a ciphertext block, and expandedKey,
 
- // an array of words representing the expanded key previously returned by
 
- // keyExpansion(). The decrypted block is returned as an array of bytes.
 
- function decrypt(block, expandedKey) {
 
-   var i;
 
-   if (!block || block.length*8 != blockSizeInBits)
 
-      return;
 
-   if (!expandedKey)
 
-      return;
 
-   block = packBytes(block);
 
-   InverseFinalRound(block, expandedKey.slice(Nb*Nr));
 
-   for (i = Nr – 1; i>0; i--)
 
-     InverseRound(block, expandedKey.slice(Nb*i, Nb*(i+1)));
 
-   addRoundKey(block, expandedKey);
 
-   return unpackBytes(block);
 
- }
 
- // This method takes a byte array (byteArray) and converts it to a string by
 
- // applying String.fromCharCode() to each value and concatenating the result.
 
- // The resulting string is returned. Note that this function SKIPS zero bytes
 
- // under the assumption that they are padding added in formatPlaintext().
 
- // Obviously, do not invoke this method on raw data that can contain zero
 
- // bytes. It is really only appropriate for printable ASCII/Latin-1
 
- // values. Roll your own function for more robust functionality :)
 
- function byteArrayToString(byteArray) {
 
-   var result = "";
 
-   for(var i=0; i<byteArray.length; i++)
 
-     if (byteArray[i] != 0)
 
-       result += String.fromCharCode(byteArray[i]);
 
-   return result;
 
- }
 
- // This function takes an array of bytes (byteArray) and converts them
 
- // to a hexadecimal string. Array element 0 is found at the beginning of
 
- // the resulting string, high nibble first. Consecutive elements follow
 
- // similarly, for example [16, 255] --> "10ff". The function returns a
 
- // string.
 
- function byteArrayToHex(byteArray) {
 
-   var result = "";
 
-   if (!byteArray)
 
-     return;
 
-   for (var i=0; i<byteArray.length; i++)
 
-     result += ((byteArray[i]<16) ? "0" : "") + byteArray[i].toString(16);
 
-   return result;
 
- }
 
- // This function converts a string containing hexadecimal digits to an
 
- // array of bytes. The resulting byte array is filled in the order the
 
- // values occur in the string, for example "10FF" --> [16, 255]. This
 
- // function returns an array.
 
- function hexToByteArray(hexString) {
 
-   var byteArray = [];
 
-   if (hexString.length % 2)             // must have even length
 
-     return;
 
-   if (hexString.indexOf("0x") == 0 || hexString.indexOf("0X") == 0)
 
-     hexString = hexString.substring(2);
 
-   for (var i = 0; i<hexString.length; i += 2)
 
-     byteArray[Math.floor(i/2)] = parseInt(hexString.slice(i, i+2), 16);
 
-   return byteArray;
 
- }
 
- // This function packs an array of bytes into the four row form defined by
 
- // Rijndael. It assumes the length of the array of bytes is divisible by
 
- // four. Bytes are filled in according to the Rijndael spec (starting with
 
- // column 0, row 0 to 3). This function returns a 2d array.
 
- function packBytes(octets) {
 
-   var state = new Array();
 
-   if (!octets || octets.length % 4)
 
-     return;
 
-   state[0] = new Array();  state[1] = new Array();
 
-   state[2] = new Array();  state[3] = new Array();
 
-   for (var j=0; j<octets.length; j+= 4) {
 
-      state[0][j/4] = octets[j];
 
-      state[1][j/4] = octets[j+1];
 
-      state[2][j/4] = octets[j+2];
 
-      state[3][j/4] = octets[j+3];
 
-   }
 
-   return state;
 
- }
 
- // This function unpacks an array of bytes from the four row format preferred
 
- // by Rijndael into a single 1d array of bytes. It assumes the input "packed"
 
- // is a packed array. Bytes are filled in according to the Rijndael spec.
 
- // This function returns a 1d array of bytes.
 
- function unpackBytes(packed) {
 
-   var result = new Array();
 
-   for (var j=0; j<packed[0].length; j++) {
 
-     result[result.length] = packed[0][j];
 
-     result[result.length] = packed[1][j];
 
-     result[result.length] = packed[2][j];
 
-     result[result.length] = packed[3][j];
 
-   }
 
-   return result;
 
- }
 
- // This function takes a prospective plaintext (string or array of bytes)
 
- // and pads it with zero bytes if its length is not a multiple of the block
 
- // size. If plaintext is a string, it is converted to an array of bytes
 
- // in the process. The type checking can be made much nicer using the
 
- // instanceof operator, but this operator is not available until IE5.0 so I
 
- // chose to use the heuristic below.
 
- function formatPlaintext(plaintext) {
 
-   var bpb = blockSizeInBits / 8;               // bytes per block
 
-   var i;
 
-   // if primitive string or String instance
 
-   if (typeof plaintext == "string" || plaintext.indexOf) {
 
-     plaintext = plaintext.split("");
 
-     // Unicode issues here (ignoring high byte)
 
-     for (i=0; i<plaintext.length; i++)
 
-       plaintext[i] = plaintext[i].charCodeAt(0) & 0xFF;
 
-   }
 
-   for (i = bpb – (plaintext.length % bpb); i > 0 && i < bpb; i--)
 
-     plaintext[plaintext.length] = 0;
 
-   return plaintext;
 
- }
 
- // Returns an array containing "howMany" random bytes. YOU SHOULD CHANGE THIS
 
- // TO RETURN HIGHER QUALITY RANDOM BYTES IF YOU ARE USING THIS FOR A "REAL"
 
- // APPLICATION.
 
- function getRandomBytes(howMany) {
 
-   var i;
 
-   var bytes = new Array();
 
-   for (i=0; i<howMany; i++)
 
-     bytes[i] = Math.round(Math.random()*255);
 
-   return bytes;
 
- }
 
- // rijndaelEncrypt(plaintext, key, mode)
 
- // Encrypts the plaintext using the given key and in the given mode.
 
- // The parameter "plaintext" can either be a string or an array of bytes.
 
- // The parameter "key" must be an array of key bytes. If you have a hex
 
- // string representing the key, invoke hexToByteArray() on it to convert it
 
- // to an array of bytes. The third parameter "mode" is a string indicating
 
- // the encryption mode to use, either "ECB" or "CBC". If the parameter is
 
- // omitted, ECB is assumed.
 
- //
 
- // An array of bytes representing the cihpertext is returned. To convert
 
- // this array to hex, invoke byteArrayToHex() on it. If you are using this
 
- // "for real" it is a good idea to change the function getRandomBytes() to
 
- // something that returns truly random bits.
 
- function rijndaelEncrypt(plaintext, key, mode) {
 
-   var expandedKey, i, aBlock;
 
-   var bpb = blockSizeInBits / 8;          // bytes per block
 
-   var ct;                                 // ciphertext
 
-   if (!plaintext || !key)
 
-     return;
 
-   if (key.length*8 != keySizeInBits)
 
-     return;
 
-   if (mode == "CBC")
 
-     ct = getRandomBytes(bpb);             // get IV
 
-   else {
 
-     mode = "ECB";
 
-     ct = new Array();
 
-   }
 
-   // convert plaintext to byte array and pad with zeros if necessary.
 
-   plaintext = formatPlaintext(plaintext);
 
-   expandedKey = keyExpansion(key);
 
-   for (var block=0; block<plaintext.length / bpb; block++) {
 
-     aBlock = plaintext.slice(block*bpb, (block+1)*bpb);
 
-     if (mode == "CBC")
 
-       for (var i=0; i<bpb; i++)
 
-         aBlock[i] ^= ct[block*bpb + i];
 
-     ct = ct.concat(encrypt(aBlock, expandedKey));
 
-   }
 
-   return ct;
 
- }
 
- // rijndaelDecrypt(ciphertext, key, mode)
 
- // Decrypts the using the given key and mode. The parameter "ciphertext"
 
- // must be an array of bytes. The parameter "key" must be an array of key
 
- // bytes. If you have a hex string representing the ciphertext or key,
 
- // invoke hexToByteArray() on it to convert it to an array of bytes. The
 
- // parameter "mode" is a string, either "CBC" or "ECB".
 
- //
 
- // An array of bytes representing the plaintext is returned. To convert
 
- // this array to a hex string, invoke byteArrayToHex() on it. To convert it
 
- // to a string of characters, you can use byteArrayToString().
 
- function rijndaelDecrypt(ciphertext, key, mode) {
 
-   var expandedKey;
 
-   var bpb = blockSizeInBits / 8;          // bytes per block
 
-   var pt = new Array();                   // plaintext array
 
-   var aBlock;                             // a decrypted block
 
-   var block;                              // current block number
 
-   if (!ciphertext || !key || typeof ciphertext == "string")
 
-     return;
 
-   if (key.length*8 != keySizeInBits)
 
-     return;
 
-   if (!mode)
 
-     mode = "ECB";                         // assume ECB if mode omitted
 
-   expandedKey = keyExpansion(key);
 
-   // work backwards to accomodate CBC mode
 
-   for (block=(ciphertext.length / bpb)-1; block>0; block--) {
 
-     aBlock =
 
-      decrypt(ciphertext.slice(block*bpb,(block+1)*bpb), expandedKey);
 
-     if (mode == "CBC")
 
-       for (var i=0; i<bpb; i++)
 
-         pt[(block-1)*bpb + i] = aBlock[i] ^ ciphertext[(block-1)*bpb + i];
 
-     else
 
-       pt = aBlock.concat(pt);
 
-   }
 
-   // do last block if ECB (skips the IV in CBC)
 
-   if (mode == "ECB")
 
-     pt = decrypt(ciphertext.slice(0, bpb), expandedKey).concat(pt);
 
-   return pt;
 
- }
 
from:http://www.coolcode.org/?action=show&id=94