一切福田,不離方寸,從心而覓,感無不通。

使用ML.NET预测纽约出租车费

有了上一篇《.NET Core玩转机器学习》打基础,这一次我们以纽约出租车费的预测做为新的场景案例,来体验一下回归模型。

场景概述


我们的目标是预测纽约的出租车费,乍一看似乎仅仅取决于行程的距离和时长,然而纽约的出租车供应商对其他因素,如额外的乘客数、信用卡而不是现金支付等,会综合考虑而收取不同数额的费用。纽约市官方给出了一份样本数据

 

确定策略


为了能够预测出租车费,我们选择通过机器学习建立一个回归模型。使用官方提供的真实数据进行拟合,在训练模型的过程中确定真正能影响出租车费的决定性特征。在获得模型后,对模型进行评估验证,如果偏差在接受的范围内,就以这个模型来对新的数据进行预测。

 

解决方案


  • 创建项目

    看过上一篇文章的读者,就比较轻车熟路了,推荐使用Visual Studio 2017创建一个.NET Core的控制台应用程序项目,命名为TaxiFarePrediction。使用NuGet包管理工具添加对Microsoft.ML的引用。

  • 准备数据集

    下载训练数据集taxi-fare-train.csv和验证数据集taxi-fare-test.csv,数据集的内容类似为:

    对字段简单说明一下:

    字段名 含义 说明
    vendor_id 供应商编号 特征值
    rate_code 比率码 特征值
    passenger_count 乘客人数 特征值
    trip_time_in_secs 行程时长 特征值
    trip_distance 行程距离 特征值
    payment_type 支付类型 特征值
    fare_amount 费用 目标值

    在项目中添加一个Data目录,将两份数据集复制到该目录下,对文件属性设置“复制到输出目录”。


  • 定义数据类型和路径

    首先声明相关的包引用。

    在Main函数的上方定义一些使用到的常量。

    接下来定义一些使用到的数据类型,以及和数据集中每一行的位置对应关系。

     

  • 创建处理过程

    创建一个Train方法,定义对数据集的处理过程,随后声明一个模型接收训练后的结果,在返回前把模型保存到指定的位置,以便以后直接取出来使用不需要再重新训练。

     

  • 评估验证模型

    创建一个Evaluate方法,对训练后的模型进行验证评估。

     

  • 预测新数据

    定义一个被用于预测的新数据,对于各个特征进行恰当地赋值。

    预测的方法很简单,prediction即预测的结果,从中打印出预测的费用和真实费用。

     

  • 运行结果

到此我们完成了所有的步骤,关于这些代码的详细说明,可以参看《Tutorial: Use ML.NET to Predict New York Taxi Fares (Regression)》,只是要注意该文中的部分代码有误,由于使用到了C# 7.1的语法特性,本文的代码是经过了修正的。完整的代码如下:

 

不知不觉我们的ML.NET之旅又向前进了一步,是不是对于使用.NET Core进行机器学习解决现实生活中的问题更有兴趣了?请保持关注吧。

 

from:http://www.cnblogs.com/BeanHsiang/p/9017618.html